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Abstract. We consider chains consisting of several identical subsystems weakly coupled by various types
of next neighbor interactions. At both ends the chain is coupled to a respective heat bath with different
temperature modeled by a Lindblad formalism. The temperature gradient introduced by this environment
is then treated as an external perturbation. We propose a method to evaluate the heat current and the local
temperature profile of the resulting stationary state as well as the heat conductivity in such systems. This
method is similar to Kubo techniques used e.g. for electrical transport but extended here to the Liouville
space.

PACS. 05.60.Gg Quantum transport – 05.30.-d Quantum statistical mechanics – 05.70.Ln Nonequilibrium
and irreversible thermodynamics

1 Introduction

As a specific topic of non-equilibrium thermodynamics,
heat conduction has been of central interest for a long
time. Instead of reaching a complete equilibrium state, the
composite system under some appropriate perturbation
enters a local equilibrium state – small parts of the system
approach equilibrium but not the whole system.

Within non-equilibrium statistical mechanics the the-
ory of linear response, originally developed to account for
electric conductivity, is a very important method to in-
vestigate dynamical as well as static properties of mate-
rials [1–4]. In this context the famous Kubo-formulas [5]
have led to a rapid development in the theoretical under-
standing of processes induced by an external perturbation
of the system. However, a direct mapping of these ideas
on pure thermal transport phenomena (perturbations due
to thermal gradients [6]) faces serious problems: Contrary
to the case of external perturbations by an electric field,
thermal perturbations cannot directly be described by a
potential term in the Hamiltonian of the system. Rather,
the thermal perturbation is introduced by heat baths with
different temperatures coupled to the system, thus calling
for a more detailed description than is needed for elec-
tric transport. Nevertheless, those methods are often used,
eventually because of their immediate success in describ-
ing non-equilibrium processes [1,7–9].

a e-mail: mathias@theo1.physik.uni-stuttgart.de

Recently, the main focus of considerations on heat con-
duction and Fourier’s law has shifted towards small (one
dimensional) quantum systems [10,11]. Typically, these
systems are chains of identical subsystems weakly coupled
by some next neighbor interaction. Based on the Lindblad
formalism [12] or on techniques of quantum master equa-
tions, heat baths are then weakly coupled to the chain at
both ends. The influence of these heat baths enters the
Liouville-von-Neumann equation of the system via super
operators acting on the density operator of the chain [13].
It has been found that in such systems the appearance of
a normal heat conduction depends on the type of the in-
teraction between these elementary subsystems [14]. Most
quantum mechanical interactions show a normal heat con-
duction behavior (constant non-vanishing local tempera-
ture gradients), whereas for special coupling types the lo-
cal gradient within the chain vanishes (divergence of the
conductivity, non-normal scenario).

For a comparison of these two different methods for
investigating heat conduction – the Kubo formulas and
the open system approach – see [13].

Instead of solving the full Liouville-von-Neumann
equation it should be highly desirable to have a simple
but consistent perturbation method available. However,
as already indicated, the mentioned super operators de-
scribing the influence of the environment cannot be writ-
ten as a potential term in the Hamiltonian of the system.
To consistently treat heat currents and local temperature
gradients quantitatively also for these model systems, we
propose to extend the Kubo technique to Liouville space.
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2 Unperturbed system

In the following we will work in the Liouville space of the
considered system rather than in the respective Hilbert
space. Thus we consider super operators acting on oper-
ators in Hilbert space, e.g. the density operator of the
system (for a more detailed introduction to super opera-
tors see [15–17]). The complete Liouville operator of the
system under consideration is given here by

L = Lsys + L1(T1) + L2(T2). (1)

The first term controls the coherent evolution of the quan-
tum system defined by the Hamiltonian Ĥ : It is defined
by its action on the density operator ρ̂ according to

Lsysρ̂ = − i
�

[
Ĥ, ρ̂

]
. (2)

The system Ĥ is here a chain of N identical subunits
with n levels each, coupled weakly by a next neighbor
interaction, thus living in a Liouville space of dimen-
sion n2N . One could think of several concrete model sys-
tems, for example spin models (n = 2), for which the
Hamiltonian would read

Ĥ =
N∑

µ=1

σ̂
(µ)
3

+
N−1∑
µ=1

(
Jxσ̂

(µ)
1 σ̂

(µ+1)
1 + Jyσ̂

(µ)
2 σ̂

(µ+1)
2 + Jz σ̂

(µ)
3 σ̂

(µ+1)
3

)
.

(3)

The first term is the local part of the Hamiltonian, whereas
the second defines the interaction between the subsystems
(σ̂(µ)

i denote the Pauli operators of the µth spin). Choos-
ing Jx = Jy = Jz we get the Heisenberg interaction and
for Jz = 0, Jx = Jy an energy transfer coupling only
(XY model). Furthermore, to avoid any bias we will of-
ten use a random next neighbor interaction but without
disorder (the same random interaction between different
subsystems).

The chain is weakly coupled to two heat baths, one
at each end of the system, given by the super oper-
ators L1(T1) and L2(T2), where, e.g., in case of spin
chains L1(T1) is

L1(T1)ρ̂ = W ↓
1 (T1)

(
2σ̂

(1)
− ρ̂σ̂

(1)
+ − ρ̂σ̂

(1)
+ σ̂

(1)
− − σ̂

(1)
+ σ̂

(1)
− ρ̂

)

+ W ↑
1 (T1)

(
2σ̂

(1)
+ ρ̂σ̂

(1)
− − ρ̂σ̂

(1)
− σ̂

(1)
+ − σ̂

(1)
− σ̂

(1)
+ ρ̂

)
. (4)

Here, σ̂
(1)
+ and σ̂

(1)
− are the raising/lowering operators

acting on the first spin, and the W ’s are the so called
rates which contain the bath temperature. These are
standard Lindblad operators [12], well known from the
theory of open systems in quantum optics, which intro-
duce the damping of the environment into the Liouville-
von-Neumann equation of the system. This procedure is

the same as a quantum master equation [18,19], used to
describe dissipative quantum systems, for example in [20].
They can easily be generalised to finite n > 2. L2(T2) is
defined correspondingly.

For the unperturbed system both bath systems are
at the same temperature T1 = T2 = T . The whole
Liouville-von-Neumann equation of the unperturbed sys-
tem then reads

∂

∂t
ρ̂ = L0ρ̂, (5)

with
L0 = Lsys + L1(T ) + L2(T ). (6)

Since the two baths have exactly the same temperature
we expect the system to settle in a thermal stationary
state ρ̂0: This state should support neither a heat current
nor temperature gradients – it is a global equilibrium state
with temperature T .

The eigenvalues and eigenvectors of the unperturbed
system are given by the eigen equation

L0|ρ̂j) = lj |ρ̂j) , j = 0, . . . , n2N − 1, (7)

where the ket-vectors in Liouville space have been denoted
as |. . .). A scalar product of vectors in Liouville space can
be defined by

(ρ̂i|ρ̂j) = Tr
{

ρ̂†i ρ̂j

}
. (8)

The (unique) stationary state ρ̂0 is also an eigenvector of
the system with eigenvalue zero, L0|ρ̂0) = 0, whereas all
other eigenvalues have a negative real part. This is due to
the fact that asymptotically the system should enter the
equilibrium state |ρ̂0) regardless of which state the system
was at the beginning. No other eigenvector is able to con-
tribute to the equilibrium state, i.e. all other eigenvectors
must be unstable.

Since the Liouville operator L0 is not hermitian, the
eigenvectors do not form an orthogonal basis, i.e.

∑
j

|ρ̂j)(ρ̂j | = G (9)

is in general not the unit operator in Liouville space
(cf. [15]). But with the help of the super operator G it
is possible to find a dual basis |ρ̂j) = G−1|ρ̂j) with the
property ∑

j

|ρ̂j)(ρ̂j | = 1̂. (10)

Based on this complete basis, we can expand each state of
the system in terms of the eigensystem

|ρ̂) =
n2N−1∑

j=0

|ρ̂j)(ρ̂j |ρ̂) = |ρ̂0) +
n2N−1∑

j=1

cj |ρ̂j) , (11)

with cj = (ρ̂j |ρ̂). Because the system will asymptotically
be found in the normalized stationary state |ρ̂0) and we
have to require that the state |ρ̂) is normalized for the
whole time evolution, each eigenstate must be tracefree
(except |ρ̂0)).
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3 Perturbation and local equilibrium state

The system will be perturbed now by applying a small
temperature gradient ∆T . We start at time t = −∞ and
switch on the perturbation exponentially till t = 0, let-
ting ∆T constant for all times t > 0. Thereafter the system
is subject to this small constant external temperature gra-
dient. We are interested in the properties of the stationary
local equilibrium state of the system reached in the limit
t → ∞ (this state now contains stationary currents and a
constant temperature profile).

The Liouville operator of the perturbation is thus
given by

L′(∆T, t) = L1

(
T +

∆T

2
f(t)

)
+ L2

(
T − ∆T

2
f(t)

)
,

(12)
where

f(t) = Θ(−t)et+Θ(t) , with Θ(t) =

{
0 t < 0
1 t > 0.

(13)

The two environment operators are the same as before but
with a time dependent external temperature difference.

The time evolution of the whole system under the
influence of the perturbation is given by the Liouville-
von-Neumann equation

∂

∂t
ρ̂ = (L0 + L′(∆T, t))ρ̂. (14)

Starting from the past in a thermal equilibrium state ρ̂0,
we assume the time dependent state of the whole system
to be

ρ̂ = ρ̂0 + ∆ρ̂(t). (15)

Introducing this into (14), suppressing terms of higher
oder in the perturbation and observing that ∂ρ̂0/∂t =
L0ρ̂0 = 0 one finds the time evolution equation for ∆ρ̂(t),

∂

∂t
∆ρ̂(t) − L0∆ρ̂(t) = L′(∆T, t)ρ̂0. (16)

With a transformation similar to the one introduced by
Kubo for the Hilbert-space

eL0t
( ∂

∂t

(
e−L0t∆ρ̂(t)

))
=

∂

∂t
∆ρ̂(t) − L0∆ρ̂(t), (17)

one can integrate the differential equation, finding the for-
mal solution for the time-dependent perturbation

∆ρ̂(t) =
∫ t

−∞
dt′eL0(t−t′)L′(∆T, t′)ρ̂0. (18)

Let us call this equation the Kubo-formula in Liouville
space (see also [1]).

In the case of a chain of two level systems each of
the two super operators i = 1, 2 of the bath coupling at
both ends of the system consist of two transition processes
(in case of finite temperatures)

Li(T ) = W ↓
i (T )E↓

i + W ↑
i (T )E↑

i , (19)

with the two rates W ↓
i (T ) = (1−T )λB and W ↑

i (T ) = TλB

(λB is the coupling strength of the environment, T its tem-
perature) and E↓

i , E↑
i are transition operators. According

to (4) these transition operators read, e.g.,

E↓
µρ̂ =

(
2σ̂

(µ)
− ρ̂σ̂

(µ)
+ − ρ̂σ̂

(µ)
+ σ̂

(µ)
− − σ̂

(µ)
+ σ̂

(µ)
− ρ̂

)
(20)

(For more energy levels of the subunits in the chain one has
to account for all possible transitions – a straight-forward
extension.)

With this definition the perturbed super operator (12)
can be rewritten as

L′(∆T, t) = L1(T ) + L2(T ) +
∆TλB

2
f(t)E , (21)

with E = −E↓
1 + E↑

1 + E↓
2 − E↑

2 . The first two terms just
replicate the bath operators with the same temperature at
both ends. Acting on the unperturbed equilibrium state
these terms vanish and therefore (18) reduces to

∆ρ̂(t) =
∆TλB

2

∫ t

−∞
dt′eL0(t−t′)f(t′)E ρ̂0. (22)

Introducing the unit operator of the Liouville space, de-
fined in (10), into (22)

∆ρ̂(t) =
∆TλB

2

∫ t

−∞
dt′eL0(t−t′)

∑
j

|ρ̂j)(ρ̂j |f(t′)E ρ̂0,

(23)
we find using eL0(t−t′)|ρ̂j) = elj(t−t′)|ρ̂j)

∆ρ̂(t) =
∆TλB

2

∑
j

(ρ̂j |E|ρ̂0)|ρ̂j)
∫ t

−∞
elj(t−t′)f(t′)dt′.

(24)
By integrating over t′ with the function f(t′) as defined
in (13) and taking into account that the real part of lj
is negative (for j �= 0), we finally get the time dependent
perturbation of the density operator

∆ρ̂(t) =
∆TλB

2

(
(1 + t)(ρ̂0|E|ρ̂0)|ρ̂0)

+
n2N−1∑

j=1

(
eljt

1 − lj
+

eljt − 1
lj

)
(ρ̂j |E|ρ̂0)|ρ̂j)

)
. (25)

The first term results from the integration over the addend
j = 0, the sum contains the rest. Rewriting the matrix
element of the super operator E as a scalar product defined
by (8), we find

(ρ̂0|E|ρ̂0) = (ρ̂0|E ρ̂0) = Tr {ρ̂0(E ρ̂0)} . (26)

The conservation of the trace of the complete Liouville-
von-Neumann equation (14) requires that each operator
produced by an action of the perturbation operator E on
an arbitrary density operator has to be a trace free opera-
tor. Since |ρ̂0) is the only basis state with non-zero trace,



558 The European Physical Journal B

as argued before, we have to require that E ρ̂0 has no com-
ponent in |ρ̂0) direction. Therefore this matrix element
should be zero and (25) reduces to

∆ρ̂(t) =
∆TλB

2

n2N−1∑
j=1

(
eljt

1 − lj
+

eljt − 1
lj

)
(ρ̂j |E|ρ̂0)|ρ̂j).

(27)
This perturbative term includes all currents and local tem-
perature gradients of the system under the perturbation.
Since we are interested in a local equilibrium state – a
stationary state with a constant current and temperature
profile, which will be reached after a certain relaxation
time, we consider (27) in the limit of t → ∞ finding

∆ρ̂ = lim
t→∞ ∆ρ̂(t) = −∆TλB

2

n2N−1∑
j=1

(ρ̂j |E|ρ̂0)
lj

|ρ̂j). (28)

This is the first-order change of the density operator in-
troduced by the perturbation.

4 Current and local temperature profile

Now we are able to account for the local temperature pro-
file and the expectation value of the current. The energy
current operator Ĵ (µ,µ+1) can be derived from a discretized
version of the continuity equation (formulating a current
into and out of the site µ, respectively)

i
[
Ĥ, Ĥ

(µ)
loc

]
= Ĵ (µ−1,µ) − Ĵ (µ,µ+1). (29)

As a measure for the temperature T of a single subsystem
we use here the local energy of the system so that 0 ≤
T ≤ 0.5 in units of the local level spacing, cf. [14,21].
This should be appropriate for weakly coupled subsystems
within the chain (only a very small amount of energy is
within the interaction). The operator

∆Ĥ
(µ,µ+1)
loc = Ĥ

(µ)
loc − Ĥ

(µ+1)
loc , (30)

measures the local energy difference between two adjacent
subsystems µ and µ + 1 (µ = 1, 2, . . . , N − 1).

Since the whole stationary density operator of the sys-
tem is now given by ρ̂ = ρ̂0+∆ρ̂ and since we know that ρ̂0

does not give rise to any local temperature difference and
current, the expectation values of the operators defined
above are determined only by ∆ρ̂ from (28). Therefore we
find for the local internal temperature gradient

δT (µ,µ+1) = Tr
{
∆Ĥ

(µ,µ+1)
loc ∆ρ̂

}

= −∆TλB

2

n2N−1∑
j=1

(ρ̂j|E|ρ̂0)
lj

Tr
{
∆Ĥ

(µ,µ+1)
loc ρ̂j

}
(31)

and the local current within the system

J (µ,µ+1) = Tr
{

Ĵ (µ,µ+1)∆ρ̂
}

= −∆TλB

2

n2N−1∑
j=1

(ρ̂j |E|ρ̂0)
lj

Tr
{
Ĵ (µ,µ+1)ρ̂j

}
. (32)

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

κ
(2

,3
)

∆T

eq. (14)

eq. (34)

Fig. 1. Local conductivity κ(2,3) in a Heisenberg spin chain of
4 spins as a function of the external perturbation ∆T ; the solid
line refers to the solution of the full Liouville-von-Neumann
equation, the dashed line shows (34).

The current as well as the local temperature gradient are
thus found to depend linearly on the global temperature
difference of the bath systems. Under stationary condi-
tions the current must be independent of µ, J (µ,µ+1) = J ,
so that (32) can be rewritten as

J = −κ′∆T. (33)

Eigenstates and eigenvalues entering here the global con-
ductivity κ′ depend only on the mean temperature of
the unperturbed system, not on ∆T . Based on this κ′
as a global property of the system, including its contact
properties to the environments, let us call (33) “external
Fourier’s Law”.

Furthermore, combining (31) and (32), we can define
a local conductivity within the system

κ(µ,µ+1) = − J (µ,µ+1)

δT (µ,µ+1)
= − J

δT (µ,µ+1)
(34)

implying also κ(µ,µ+1) to be independent of the external
gradient ∆T .

We can compare this result with the complete numer-
ical solution of the Liouville-von-Neumann equation (14),
here for a Heisenberg spin chain with four spins. In Fig-
ure 1 we show the local conductivity of the two central spin
systems κ(2,3) as a function of the external gradient ∆T .
Indeed, we find numerically that κ(2,3) according to (34)
does not depend on ∆T (dashed line). The exact numeri-
cal solution of the Liouville-von-Neumann equation shows
a weak ∆T dependence (solid line). As expected, linear
transport and our perturbational theory applies for not
too large external gradients ∆T only. Note that the full
range of temperatures 0 ≤ T < ∞ has been mapped here
onto the interval [0, 0.5] (∆T = 0.3 is thus already a large
gradient).

The theoretical predictions of the perturbation the-
ory at hand concerning temperature gradients and cur-
rents within the chain for all investigated systems
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(Heisenberg, XY and random coupling model) are in
very good accordance with the numerical solution of the
complete Liouville-von-Neumann equation of the system
(compare [14]).

“Normal” heat conduction (Fourier’s Law) is associ-
ated with a constant but non-zero local temperature gra-
dient and thus a finite conductivity κ(µ,µ+1) = κ inde-
pendent of site µ everywhere in the system (see [3,21]).
But note that this internal conductivity κ is not nec-
essarily identical with the global κ′ since the latter de-
pends additionally on the bath contacts. In the limit of
long chains the conductivity should be independent of the
contacts, yielding the correct scaling behavior within the
chain (see [14]).

The majority of coupling types within the chain, the
Heisenberg coupling and the random next neighbor in-
teraction, indeed show this normal behavior in the weak
coupling limit [14,21]. But this “normal” transport type
does not always show up: A spin-spin interaction consist-
ing of an energy transfer coupling only (XY model) leads
to a vanishing temperature gradient off the contact re-
gions. This vanishing gradient implies a divergent conduc-
tivity within the chain κ(µ,µ+1). Nevertheless the current
remains finite because of the resistance at the contacts,
therefore the global conductivity κ defined in (33) also re-
mains finite for this special coupling type. Therefore we
could state that the “external Fourier’s Law” is valid even
if Fourier’s Law proper does not apply. These results can
be compared with the numerical results of the full solu-
tion of the Liouville-von-Neumann equation and we find
perfect agreement.

5 Conclusion

We have considered heat conduction in small quantum sys-
tems built up from identical subsystems weakly coupled by
some next neighbor interaction. By a perturbation theory
similar to that introduced by Kubo but extended to the
full Liouville space of the system, we have been able to de-
rive a quantitative equation for the temperature gradient
and heat currents within such systems. These equations
depend only on properties of the unperturbed system and
linearly on the strength of the perturbation ∆T .

The most remarkable point of the equation for the heat
current and the temperature profile is the fact that the
global temperature difference of the external bath systems
shows up only as a parameter. This is not only a numeri-
cal advantage, since a diagonalization for different global
gradients is no longer necessary, but also an interesting
physical fact: The heat conductivity is independent of the
external gradient ∆T , and the “external Fourier’s Law” is
always fulfilled, even if the internal gradient of the system
is not constant, as long as the perturbation theory applies.

Our approach does not have the problem of introduc-
ing a potential term into the Hamiltonian of the system,
like in standard Kubo formulas for heat conduction. The

bath systems, modeled by a Linblad formalism, directly
define the perturbation in Liouville space. Like in standard
perturbation theory in Hilbert space, the first order cor-
rection to the stationary state of the system is expressed
in terms of transition matrix elements of the perturbation
operator and the eigenstates and eigenvalues of the unper-
turbed system. Only the non-orthogonality of the eigen-
system of the unperturbed system needs a more careful
treatment, formally the equations are very similar.

In the future we intend to investigate further aspects of
the derived formalism, hoping to clarify the question of the
different transport behavior (non-vanishing and vanishing
local gradients) under different coupling types.

We thank M. Hartmann, M. Henrich, Ch. Kostoglou, H.
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discussions. Financial support by the Deutsche Forschungsge-
sellschaft is gratefully acknowledged.
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